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An inertial, active device running on its internal feedback is proposed for controlling the

self-excited vibration of a single degree-of-freedom Rayleigh oscillator. The control

strategy utilizes the time-delayed feedback of the acceleration of the sprung mass of the

device. The feedback law is recursive in nature and based on large amount of weighted

properly tuned, either completely quenches or reduces the amplitude of vibration.

A comparison with a passive absorber reveals that the proposed active absorber can

achieve better stability conditions. However like a passive absorber, the device has finite

robustness, i.e., it can control only a certain level of instability inherent in the primary

self-excited system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

There are numerous examples of self-excited vibration like, flutter of aircraft wings and turbine blades, instability of
rotating shafts, friction-induced vibrations in brakes and clutches, galloping of transmission lines, flow induced vibration in
pipes, aerodynamically induced motion in bridges, chattering of machine tools etc. The mechanism of self-excited
vibration is attributed to the presence of a nonlinear state dependent force inherent in the system dynamics, where the
dynamics in the phase-space around the unstable static equilibrium is governed by an equivalent negative damping force
and the dynamics far away from the equilibrium is positively damped. As a result of these two opposing forces, a steady-
state vibration is produced. The most commonly studied mathematical models of self-excited oscillators are the van der
Pol oscillator and the Rayleigh oscillator.

In most cases, self-excited vibration poses a great problem in the safe running of engineering systems and devices.
Therefore, it is necessary to find means of either completely suppressing the vibration, wherever possible, or reducing
the amplitude of vibration. In principle, self-excited vibration can be controlled by increasing the overall damping of the
vibrating body. Several passive and active methods can be employed for enhancing the level of damping of the structure.

The most intuitive passive control device is the conventional dynamic vibration absorber (DVA). However, the DVA
becomes effective only for larger mass ratio of the absorber [1,2]. Sometimes, this requirement may render the DVA rather
infeasible in suppressing self-excited oscillations. Moreover, an appropriate tuning of the absorber frequency is also
necessary for the successful operation of the DVA. Asfar [3] has shown that use of the Lanchester damper can circumvent
the requirement of the absorber tuning. Use of an appropriately designed impact damper is another alternative [4]. Tondl
et al. [5] have also discussed the use of autoparametric absorber for controlling self-excited oscillations.
ll rights reserved.
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Active control methods are more attractive and versatile compared to passive vibration control techniques. Several
active control methods for suppressing self-excited oscillations have been reported. Hall et al. [6] have proposed a new
strategy, based on the nonlinear phenomenon of saturation for controlling the self-excited, aerodynamic flutter of a wing.
The saturation controller can effectively suppress flutter oscillations of a wing when the controller frequency is actively
tuned. El-Badawy and Nasar El-Deen [7] have also demonstrated the feasibility of the nonlinear saturation based control to
suppress self-excited vibrations by using an active nonlinear feedback control. The authors use the van der Pol oscillator as
the working model for a self-excited system. A saturation phenomenon is induced by tuning the frequency of an under-
damped second-order absorber to one-half that of the primary system. Tondl [8,9] proposes a new concept of suppressing
self-excited vibrations using parametric excitation. It is shown that within a certain frequency interval, a phenomenon
called ‘parametric antiresonance’ can occur and self-excited vibrations can be fully cancelled by the parametric excitation.
Subsequently several researchers have further investigated and applied this concept for suppressing self-excited vibrations
of different real-life systems [10–15]. Chatterjee [16] proposes a novel active, model-independent method of controlling
vibrations using impulses generated by alternately contacting and expanding a mass-loaded, piezoelectric stack actuator.
The above concept is adapted from the working principle of an impact damper. The proposed method can control any type
of the vibration including self-excited vibration.

Friction driven self-excited oscillation is another class of significant problem which has been addressed several times in
the literature. Several active and semi-active methods have been proposed to control friction-induced oscillations [17–23].

Despite the number of advantages, the performance of a closed-loop control system may significantly deteriorate owing
to the unavoidable time-delay present in the digital feedback circuit. To circumvent this problem, researchers have
proposed using intentional and controllable time-delay in the feedback circuit. This particular method, termed as the time-
delayed feedback control, has emerged as an efficient control technique in modern control strategies. Proper choices of the
time-delay and the control gain in the feedback circuit ensure the stability of the static equilibrium. Time-delayed feedback
has been proven effective in controlling different kinds of vibrations including self-excited vibrations. Atay [24,25], Maccari
[26,27] and Li et al. [28] discuss the use of time-delayed state feedback method in controlling free, forced and parametric
vibrations of the Van der Pol oscillator. Elmer [29] proposes a method of controlling friction-induced oscillations by normal
load modulation based on the time-delayed state feedback. Das and Mallik [30] consider the time-delayed PD feedback
control of the forced vibration of a friction-driven system. Chatterjee [31] has discussed the time-delayed feedback control
of different types of friction-induced instabilities and oscillations. Chatterjee and Mahata [32] have proposed active
absorbers operating on time-delayed feedback for suppressing friction-induced self-excited vibration.

The present paper proposes a class of inertial, vibration control device that when attached to the vibrating body will
operate actively without any sensory feedback from the primary vibrating structure. The appended, active device will run
on the feedback, internal to the device itself. Fundamentally, the proposed device comprises of a spring mass system
attached to a rigid base and an actuator placed in between the base and the mass. The actuator is controlled by a sensory
feedback of the oscillating mass of the device itself. The base of the device can be simply connected to the primary
structure to produce either complete stabilization or reduction of the intensity of the self-excited vibration.

An appropriate choice of the sensor for practical applications is always difficult. For example, though theoretically the
state-variable feedback is the most common and robust control method, difficulty in measuring the displacement and
velocity directly without an inertial reference frame renders the practical implementation of the state feedback method
often infeasible. However, direct measurement of the acceleration using an accelerometer is a cheap and reliable
alternative. Using double integration of the acceleration signal for the indirect displacement measurement often produces
large error; so is true for the velocity measurement. However, introducing a phase change in the acceleration feedback
signal can produce the desired damping effect. Introducing a controllable time-delay in the feedback path is one of the
many ways of producing this phase change. The present paper considers the time-delayed acceleration of the vibrating
mass of the active device as the sensory feedback for controlling the actuator.

A mathematical model of the system consisting of a single degree-of-freedom self-excited Rayleigh oscillator attached
with the above-mentioned active device is developed. Both linear and nonlinear stability analyses are performed to
understand the dynamics of the system. In order to assess the efficacy of the proposed device, its optimal performance is
compared with that of the passive DVA. The device is shown to perform better compared to the passive DVA.

2. Mathematical model

A mathematical model of the system attached with the active device is illustrated in Fig. 1. The primary structure is a
single degree-of-freedom self-excited Rayleigh oscillator having the primary mass M suspended by a spring of stiffness K. A
secondary mass m is attached to the primary structure by a spring of stiffness Ka. An actuator is placed in between the
primary and the secondary mass to apply the control force Fc. X and Y are the absolute displacements of the primary and
the secondary mass, respectively.

Equations of motion of the two degrees-of-freedom system illustrated in Fig. 1 read as

MX00 þFðX0ÞþKXþKaðX�YÞ ¼�Fc ; (1)

mY 00 þKaðY�XÞ ¼ Fc ; (2)
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Fig. 1. Mathematical model of the system.
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where the nonlinear force FðX0Þ, responsible for the self-excitation is expressed as

FðX0Þ ¼ aX0 þbX
03; ao0; b40: (3)

The ‘dash’ denotes the derivative with respect to time t* in Eqs. (1)–(3).
The control force (Fc) is expressed as

Fc ¼ KcU; (4)

where Kc is the control gain.
The control signal U is synthesized as the recursive weighted summation of the acceleration of the secondary mass and

the control signal itself both at a specific time-delay t*. The control signal is mathematically represented as

U ¼ Y 00ðt��t�ÞþRUðt��t�Þ; (5)

where t� is the time-delay and R is the weighting factor, henceforth termed as the recursive gain. The absolute numerical
value of the parameter R is less than unity. Thus, the control can be rightly termed as the recursive time-delayed feedback
control [33].

An alternative mathematical representation of the control signal given in (5) is as follows

U ¼
X1
k ¼ 1

Rk�1Y 00ðt��kt�Þ: (6)

Though the particular mathematical form of the control signal expressed in Eq. (5) is convenient for practical realization of
the control, Eq. (6) offers a better interpretation of the control action. One can interpret the control signal in Eq. (5) as the
infinite weighted sum of the acceleration of the secondary mass measured at equal intervals in the past. Evidently, a higher
weight is given to a more recent data. Thus, the feedback signal uses a large amount of information about the past history
of the dynamics. It is interesting to note that the control law defined in Eqs. (4)–(6) is the generalized form of the time-
delayed acceleration feedback, whence one gets the ordinary time-delayed acceleration feedback, as a special case, for R=0
(non-recursive feedback). The advantage of such a feedback is discussed elsewhere in the paper.

Eqs. (1) and (2) can be recast in the following non-dimensional form:

1 0

0 m

" #
€x

€y

( )
þ

1þmo2
a �mo2

a

�mo2
a mo2

a

" #
x

y

( )
¼
�f ð _xÞ

0

� �
þ
�fc

fc

( )
; (7)

with the following non-dimensional quantities:

x¼
X

x0
; y¼

Y

x0
; m¼ m

M
; oa ¼

o�a
o0

;

where x0 is an arbitrary length (may be taken as the static deflection of the primary oscillator), o0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
is the natural

frequency of the primary system and o�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ka=m

p
is the natural frequency of the absorber.

The ‘dot’ denotes the differentiation with respect to the non-dimensional time t¼o0t�.
Accordingly, the nonlinear self-exciting force in Eq. (3) is expressed in the non-dimensional form as

f ð _xÞ ¼ a _xþb _x3; ao0;b40; (8)

where a¼ a=Mo0, b¼ bo0x2
0=M are the two non-dimensional quantities.

The non-dimensional representation of the control force defined in Eqs. (4) and (5) is given as

fc ¼�kcu; (9)
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with

u¼ €yðt�tÞþRuðt�tÞ; (10)

where the non-dimensional control gain is kc ¼ Kc=M and the non-dimensional time-delay is t¼o0t�.
An alternative expression of Eq. (10) in the non-dimensional form is obtained from Eq. (6) as

u¼
X1
k ¼ 1

Rk�1 €yðt�ktÞ: (11)

3. Stability of the equilibrium with the passive absorber

In order to show the worth of the proposed active device, it will be pertinent to compare its performance with that of
the passive DVA. Before analysing the performance of the proposed active device in the subsequent sections, a brief
discussion on the performance of the passive DVA is presented in this section. Further details about the performance of the
DVA may be found in [2]. The mathematical model of the self-excited oscillator, with a passive DVA attached, may be
obtained by using the following expression of the control force in Eq. (7):

fc ¼ cð _x� _yÞ; (12)

where c is the non-dimensional viscous damping coefficient of the DVA.
The characteristic equation of the system with the DVA is a fourth-order polynomial equation given below

s4þc3s3þc2s2þc1sþc0 ¼ 0; (13)

where c3 ¼ cþaþc=m, c2 ¼ 1þo2
aþmo2

aþac=m, c1 ¼ ao2
aþc=m, and c0 ¼o2

a .
The regions of stability of the static equilibrium are shown in Fig. 2. It is observed that the stability cannot be achieved

beyond a critical value of a. It may be noted that the degree of instability inherent in the original self-excited system is
quantified by the value of the negative damping (a) in the system. Clearly the more negative is the value of a, the stronger
Fig. 2. Regions of stability of the static equilibrium with the passive DVA. m=0.2.
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is the instability. It is important to obtain the optimum values of the absorber damping and the frequency. There may be
two bases for the optimum selection of the absorber parameters. One may attempt to maximize either the robustness or
some measure of the stability of the designed system. Towards this end, the following two definitions are introduced
below:
Definition 1. Robustness—The absolute value of the maximum instability inherent to the original self-excited oscillator
that can be stabilized by the DVA is defined as the robustness of the system.
Definition 2. s-stability—Value of the real part of the dominant, stable (lying in left hand s-plane) eigenvalues of the
linearized system. The more negative is this value, the higher is the s-stability.
According to the Definition 1, the passive DVA has only finite robustness. Indeed, the robustness can be improved further
by using larger mass ratios (results are not shown). However, using a large mass ratio is somewhat impractical. It is also
observed from the stability plots that the value of the absorber frequency giving the maximum robustness is little lower
than the frequency of oscillation of the self-excited system without the absorber and decreases with the increasing mass
ratio.

A typical s-stability map of the system with the DVA is shown in Fig. 3. Using the Definition 2, the real parts of the
dominant roots of the characteristic Eq. (13) are mapped in the plane of the absorber damping vs. absorber frequency.
The absorber parameters selected inside the darker region apparently gives a better s-stability. Numerical values of the
maximum s-stability and the corresponding optimum absorber parameters are listed in Table 1 for different values of
the negative damping parameter a. It is rather counterintuitive to observe that the optimum damping decreases with the
increasing degree of instability inherent to the self-excited system. However, the s-stability decreases and the required
absorber frequency increases with the increasing value of a.
Fig. 3. s-stability map for the passive absorber. m=0.2, a=�0.2.
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Table 1
Optimum parameter values of the passive absorber (m=0.2).

a Maximum s-stability Optimum absorber frequency Optimum damping

�0.1 �0.1481 0.85 0.12

�0.2 �0.1048 0.87 0.11

�0.3 �0.0531 0.89 0.09

�0.4 �0.0109 0.9 0.08

S. Chatterjee, A.K. Mandal / Journal of Sound and Vibration 329 (2010) 2435–24492440
4. Linear stability of the static equilibrium with the active absorber

For analysing the local stability of the trivial equilibrium of the system, Eq. (7) is linearized about its equilibrium. The
Laplace transform of the linearized equations yields the following quasi-polynomial characteristic equation:

PðsÞ�Q ðsÞe�st ¼ 0; (14)

where

PðsÞ ¼ ms4þams3þws2þamo2
asþmo2

a ; (15)

and

Q ðsÞ ¼ ðmR�kcÞs
4þaðmR�kcÞs

3þðwR�kcÞs
2þamo2

aRsþmo2
aR¼ 0; (16)

with w¼ mþmo2
aþm2o2

a .
The roots of Eq. (14) are purely imaginary on the root-switching boundaries where a pair of complex conjugate roots of

the characteristic equation migrate from the left hand to the right hand side of the s-plane or vice versa. Substituting s¼ jo
into Eq. (14) and separating the real and imaginary parts, yields

cosðotÞ ¼ A0D0þB0C0

C0
0þD2

0

; (17)

sinðotÞ ¼ B0D0�A0C0

C0
0þD2

0

; (18)

where A0 ¼ mo4�wo2þmo2
a , B0 ¼ amoðo2�o2

a Þ, C0 ¼ aðmR�kcÞo3�amoRo2
a , and D0 ¼ ðmR�kcÞo4�ðwR�kcÞo2þmRo2

a .
Eliminating t from Eqs. (17) and (18), yields the following polynomial equation of o:

ðA0D0þB0C0Þ
2
þðB0D0þA0C0Þ

2
�ðC2

0þD2
0Þ

2
¼ 0: (19)

The critical frequency oc is obtained by solving the above frequency equation (Eq. (19)) and the corresponding critical
time-delay is computed as

tc ¼
1

oc
tan�1 B0D0�A0C0

A0D0þB0C0

� �
þ2np

� �
;n¼ 1;2; . . . (20)

Thus, for the stability of the equilibrium to switch at the critical values computed above, the eigenvalues must cross
the imaginary axis from the left half to the right half of the s-plane or the vice versa. This is possible when the speed of the
crossing with respect to the increasing value of the time-delay is non-trivial. The speed of the eigenvalue crossing on a
switching boundary is expressed as

Vðoc ; tcÞ ¼ sign Re
ds

dt s ¼ joc ;t ¼ tc

		 
� �
;

�
(21)

where

ds

dt ¼
s

1

Q

dQ

ds
�

1

P

dP

ds
�t

� �: (22)

A pair of complex conjugate eigenvalues with positive real parts crosses the imaginary axis form right hand s-plane to left
hand s-plane when t increases past tc across a stability switch boundary with Vo0. Just the opposite thing happens when
the switch boundary is crossed with V40. Since V=0 signifies the non-crossing of the imaginary axis by the eigenvalues,
the corresponding critical values must be neglected for the computation of the stability boundaries. It is noted that the
uncontrolled system (for the range of parameter values chosen) has two pairs of complex conjugate eigenvalues with
positive real parts. Therefore, two consecutive crossings of the switch boundary with Vo0 are required for the stability of
the static equilibrium of the controlled system.

Before proceeding further, it may be noted the system under consideration is a neutral time-delayed system [34].
Therefore, it is important to know the behaviour of the non-system poles as t goes from 0 to 0+. This is checked by the
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continuity of the roots of the characteristic equation at t¼ 0. For the present problem, the root continuity at t¼ 0 is
guaranteed if the roots of the following equation, obtained from Eq. (14), lie in the left hand side of the s-plane:

m�ðmR�kcÞe
�st ¼ 0: (23)

It is not difficult to show that all roots the system (23) lie in the left hand s-plane if

R�
kc

m

				
				o1: (24)

Eq. (24) gives a necessary delay-free condition of the stability. When the condition (24) is violated, the system has an
infinite number of unstable poles at t¼ 0þ . However, within the range of the gains as prescribed by the condition (24), the
number of unstable pair of complex poles at t¼ 0þ is two.

Using Eqs. (19)–(24), the local stability boundaries are plotted in the plane of the control gain vs. time-delay for a
chosen value of the absorber frequency as shown in Figs. 4(a) and (b). It is observed that the proposed active device can
stabilize the static equilibrium up to a certain level of the inherent instability quantified by the value of a. The stability
plots in the plane of the control gain vs. absorber frequency are illustrated in Fig. 5, which demonstrates that the absorber
must be appropriately tuned to achieve the stability. For the stability, the frequency of the active absorber, like the passive
absorber, should lie closer to the frequency of self-oscillation without the active device attached. Fig. 6 shows the effect of
the recursive gain on the stability. Further discussions on the effect of the recursive gain are available in the next section.

5. Active vs. passive absorber

At this point it is pertinent to compare the performance of the passive absorber (discussed in Section 3) with that of the
proposed active device. From the local stability analysis it is observed that the maximum robustness achieved by
the proposed active device closely compares with that obtained by a passive absorber. In fact, the active device is slightly
more robust. For estimating the s-stability, the dominant roots of the characteristic equation (Eq. (14)) of the system
are computed using the quasi-polynomial mapping algorithm [35]. The maximum s-stability of the system with the active
absorber and the corresponding optimal values of the gain and the time-delay are listed in Tables 2 and 3. Apparently, the
s-stability improves a lot due to the recursive feedback, particularly for lower values of a. For example, with a=�0.2 and
m=0.2 the maximum s-stability achieved by the passive absorber is �0.1048 (see Table 1). However, with the active
device, the maximum s-stability can be as high as �0.1766 (with the absorber frequency oa=0.85 and the recursive gain
R=0.4); i.e., a 68.51 percent improvement in the s-stability is achieved using the active device.

In order to further substantiate the above conclusion that the proposed active device can achieve better s-stability,
numerical simulations of the systems are carried out. Towards this end, MATLAB SIMULINK models are developed. All
simulations are run from the initial conditions [1, 0, 0, 0], i.e. with the primary mass initially displaced by unity.
The optimum parameter values of the passive and the active absorber are taken from Tables 1 and 3, respectively.
Fig. 4. Local stability regions in the gain vs. time-delay plane. m=0.2.
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Fig. 5. Local stability regions in the gain vs. absorber frequency plane. t=1.5, m=0.2.
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The corresponding results are plotted in Figs. 7(a)–(c). From these figures it is evident that the active device produces
better transient response (i.e., higher s-stability) compared to the optimal passive absorber.

6. Nonlinear analysis

The linearized stability analysis presented in Section 4 gives an idea about the local stability of the static equilibrium.
In this section, the multiple time scale (MTS) analysis is employed to gain a deeper insight into the global nonlinear
dynamics of the system with the active device attached. To make the system amenable to the MTS analysis, both the self-
excitation and the control are assumed as weak forces. Under these circumstances, one rewrites the non-dimensional
Eq. (7) as

½M�
€x

€y

( )
þ½K�

x

y

( )
¼ e

f1

f2

( )
(25)

where e51 is a small positive quantity, f1 ¼�ða� _xþb� _x3
Þþk�c u, f2 ¼�k�c u, with ek�c ¼ kc , ea� ¼ a, eb� ¼ b.

The following similarity transformation is used for the pseudo-normalization of Eq. (25):

x

y

( )
¼ ½F�

z

v

� �
; (26)

where

½F� ¼
1 1

l1 l2

" #
;

and li ¼ 1þmo2
a�o2

i =mo
2
a , i=1,2 with oi as the natural frequency of the undamped, uncontrolled system.
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Following the pseudo-normalization, Eq. (25) is transformed into

1 0

0 1

� �
€z

€v

( )
þ

o2
1 0

0 o2
2

" #
z

v

� �
¼ e

�l2

l1�l2

1

mðl1�l2Þ

l1

l1�l2

�1

mðl1�l2Þ

2
6664

3
7775

f1

f2

( )
: (27)

The two time scale expansion of the solution of Eq. (27) is written as

z¼ z0ðT0; T1Þþez1ðT0; T1Þ; (28)

v¼ v0ðT0; T1Þþev1ðT0; T1Þ; (29)

where the two time scales for the expansion are T0 ¼ t and T1 ¼ et.
Using (28) and (29) in Eq. (27) and coining the terms of different orders, one obtains

e0 : D2
0z0þo2

1z0 ¼ 0; (30)

e1 : D2
0z1þo2

1z1 ¼�2D1D0z0þ
l2

l1�l2
g1�

1

l1�l2
l2þ

1

m

� �
g2; (31)

e0 : D2
0v0þo2

1v0 ¼ 0; (32)

e1 : D2
0v1þo2

1v1 ¼�2D1D0v0�
l1

l1�l2
g1þ

1

l1�l2
l1þ

1

m

� �
g2; (33)

where D0 ¼ q=qT0, D1D0 ¼ q2=qT1qT0, D2
0 ¼ q2=qT2

0 , g1 ¼ a�D0ðz0þv0Þþb
�
fD0ðz0þv0Þg

3, and g2 ¼ k�c
P1

k ¼ 1

Rk�1fl1D2
0z0ðT0�ktÞþl2D2

0v0ðT0�ktÞg.
The solutions of equations (30) and (32) are, respectively,

z0 ¼ A cosðo1T0þyÞ; (34)

v0 ¼ B cosðo2T0þfÞ (35)

Substituting (34) into Eq. (31) and (35) into Eq. (33) and subsequently removing the secular terms, yields the following
amplitude and phase equations:

qA

qT1
¼

A

2

l2

l1�l2
a�þ 3

4
b�ðA2o2

1þ2B2o2
2Þ

� �
�

l1o1

l1�l2
l2þ

1

m

� �
k�c S1ðR; tÞ

� �
; (36)

qB

qT1
¼

B

2

�l1

l1�l2
a�þ 3

4
b�ðB2o2

2þ2A2o2
1Þ

� �
þ

l2o2

l1�l2
l1þ

1

m

� �
k�c S2ðR; tÞ

� �
; (37)

qy
qT1
¼�

1

2

l1o1

l1�l2

� �
l2þ

1

m

� �
k�c C1ðR; tÞ; (38)

qf
qT1
¼

1

2

l2o2

l1�l2

� �
l1þ

1

m

� �
k�c C2ðR; tÞ; (39)

where

SiðR; tÞ ¼
X1
k ¼ 1

Rk�1 sinðoiktÞ ¼
sinðoitÞ

1þR2�2R cosðoitÞ
; i¼ 1;2 (40)

CiðR; tÞ ¼
X1
k ¼ 1

Rk�1 cosðoiktÞ ¼
cosðoitÞ�R

1þR2�2R cosðoitÞ
; i¼ 1;2 (41)

The amplitude Eqs. (36) and (37) can be finally recast in the following compact form:

dA

dt
¼ F1ðA;BÞ ¼ p1Aþp2A3þp3AB2; (42)

dB

dt
¼ F2ðA;BÞ ¼ p4Bþp5B3þp6BA2; (43)

where

p1 ¼
1

2

al2�o1l1 l2þ
1

m

� �
kcS1ðR; tÞ

� �
l1�l2

; p2 ¼
3

8

bo2
1l2

l1�l2

� �
; p3 ¼

3

4

bo2
2l2

l1�l2

� �
;
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Fig. 6. Effect of recursive gain on the local stability boundary. a=0.1, m=0.2.

Table 2
Optimum parameter values of the active device (m=0.2, oa=0.9).

a Maximum s-stability

Recursive gain R=0 R=0.3 R=0.4 R=0.5 R=0.6

�0.1 �0.116 (kc=0.1, t=1.4) �0.2072 (kc=0.11, t=1.7) �0.2032 (kc=0.11, t=1.5) �0.2061 (kc=0.11, t=1.4) �0.1868 (kc=0.11, t=1.3)

�0.2 �0.1131 (kc=0.09, t=1.95) �0.1543 (kc=0.1, t=1.65) �0.1501 (kc=0.1, t=1.55) �0.1669 (kc=0.11, t=1.45) �0.1365 (kc=0.11, t=1.35)

�0.3 �0.0881 (kc=0.08, t=2) �0.0984 (kc=0.1, t=1.7) �0.1201 (kc=0.1, t=1.6) �0.1051 (kc=0.1, t=1.5) �0.0868 (kc=0.1, t=1.4)

�0.4 �0.0693 (kc=0.08, t=2.05) �0.0578 (kc=0.09, t=1.75) �0.0426 (kc=0.09, t=1.7) �0.0367 (kc=0.09, t=1.6) �0.0267 (kc=0.09, t=1.5)

Table 3
Optimum parameter values of the active device (m=0.2, oa=0.85).

a Maximum s-stability

R=0 R=0.3 R=0.4 R=0.5 R=0.6

�0.1 �0.1210 (kc=0.09, t=2) �0.2305 (kc=0.11, t=1.9) �0.2194 (kc=0.11, t=1.7) �0.2253 (kc=0.12, t=1.6) �0.2005 (kc=0.12, t=1.5)

�0.2 �0.1098 (kc=0.08, t=2.1) �0.1678 (kc=0.1, t=1.9) �0.1766 (kc=0.11, t=1.75) �0.1412 (kc=0.11, t=1.65) �0.1339 (kc=0.12, t=1.55)

�0.3 �0.0933 (kc=0.08, t=2.15) �0.1277 (kc=0.1, t=1.95) �0.0822 (kc=0.11, t=1.85) �0.0987 (kc=0.11, t=1.75) �0.0806 (kc=0.11, t=1.65)

�0.4 �0.0481 (kc=0.08, t=2.2) �0.0411 (kc=0.1, t=2) �0.0294 (kc=0.1, t=1.9) �0.0172 (kc=0.11, t=1.85) �0.0346 (kc=0.11, t=1.7)
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Fig. 7. (a) Time-history plots of the response of the primary system with passive and active absorber. a=�0.1, b=0.1, m=0.2. Optimum parameter values

of the passive absorber: oa=0.85, c=0.12. Optimum parameter values of the active device: oa=0.85, R=0.3, t=1.9, kc=0.11. (b) Time-history plots of the

response of the primary system with passive and active absorber. a=�0.2, b=0.1, m=0.2. Optimum parameter values of the passive absorber: oa=0.87,

c=0.11. Parameter values of the active device: oa=0.85, R=0.4, t=1.75, kc=0.11. (c) Time-history plots of the response of the primary system with passive

and active absorber. a=�0.3, b=0.1, m=0.2. Optimum parameter values of the passive absorber: oa=0.89, c=0.09. Parameter values of the active device:

oa=0.85, R=0.3, t=1.95, kc=0.1.
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The steady-state solutions (equilibrium points in the A–B phase plane) of Eqs. (42) and (43) can be obtained by solving the
following nonlinear algebraic equations:

p1Aþp2A3þp3AB2 ¼ 0; (44)

p4Bþp5B3þp6BA2 ¼ 0: (45)

Four different steady-state solutions are possible as listed below
(1)
 A=0, B=0 (static equilibrium),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

(2)
 A=0, B¼ �p4=p5 (oscillation at the second mode),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

(3)
 A¼ �p1=p2, B=0 (oscillation at the first mode)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

(4)
 A¼ p3p4�p1p5=p2p5�p3p6, B¼ p1p6�p2p4=p2p5�p3p6 (dual mode oscillation: both the modes are present in the

oscillation).
Stabilities of these four different solutions are ascertained by computing the eigenvalues of the Jacobian of the flow of
Eqs. (42) and (43) at the equilibrium points. The expression of the Jacobian is given below

J¼
p1þ3p2A2þp3B2 2p3AB

2p6AB p4þ3p5B2þp6A2

" #
: (46)

It may be observed from the expression of the Jacobian (46) that the local stability of the trivial static equilibrium (A=0
and B=0) is determined by the signs of p1 and p4. The trivial equilibrium is stable if p1o0 and p4o0. The degree of stability
is also given by the magnitudes of p1 and p4.The variations of p1 and p4 with the time-delay for different values of R are
depicted in Figs. 8(a) and (b). With the increasing value of the recursive gain R, both p1 and p4 apparently become more

negative within a range (smaller values of time-delay) of time-delays. This implies that the recursive gain can improve the
degree of stability. This explains the improvement of the s-stability with the higher recursive gain observed in Section 5.
However, the present analysis is valid only for small values of the feedback gain.

Figs. 9(a) and (b) illustrate the typical variations of the amplitude of vibration (modal) with the time-delay. The dual
mode oscillations are always found unstable and hence omitted in the plots. The analytical results are found to be in close
agreement with that of numerical simulations. It may be observed that appropriate selections of the recursive gain and the
time-delay can completely quench the self-excited vibration (Fig. 9(b)). Even when complete stabilization of the trivial
equilibrium is not achieved, judicious selection of the time-delay can significantly reduce the amplitude of oscillation.
Variations of the amplitude of oscillations with the absorber frequency are shown in Fig. 10. It is apparent from Fig. 10 that
the appropriate selections of the gains and the time-delay render the system robust against absorber mistuning (up to a
certain limit).
Fig. 8. Variations of p1 and p4 with time-delay. a=�0.03, b=0.03, m=0.2, oa=0.9, kc=0.01.
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Fig. 9. (a) Variations of the amplitude with time-delay. m=0.2, oa=0.9, a=�0.03, b=0.03, kc=0.005, R=0. o, numerical simulations (second modes); &,

numerical simulations (first mode). Solid curves—stable; dashed curves—unstable. (b) Variations of the amplitude with time-delay. m=0.2, oa=0.9,

a=�0.03, b=0.03, kc=0.005, R=0.7. o, numerical simulations (second mode); &, numerical simulations (first mode). Solid curves—stable; dashed

curves—unstable.
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Fig. 10. Variations of the amplitude with absorber frequency. m=0.2, a=�0.1, b=0.1, kc=0.01, R=0.9. Solid curves—stable; dashed curves—unstable.
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7. Conclusions

The present paper analyses the efficacy of an inertial, active device in controlling the self-excited oscillation of a single
degree-of-freedom Rayleigh oscillator. The proposed active absorber is a standalone system comprising of a spring
suspended mass and an actuator controlled by the generalized, time-delayed feedback of the acceleration of the absorber
mass itself. As the absorber runs on its internal feedback and does not require any external sensory input, the device
operates when simply attached to the self-excited system. This renders the strategy very much user friendly. The control
algorithm is recursive in nature and utilizes a large amount of information regarding the past history of the dynamics. Both
the linear and nonlinear analyses have shown that the three control parameters, namely the control gain, recursive gain
and the time-delay can be appropriately chosen to quench the self-excited oscillation. A proper selection of the control
parameters can significantly reduce the amplitude of vibration when complete quenching is not possible.

The performance of the proposed device is compared with that of a passive DVA. Like a passive absorber, the active
device can control only a certain level of the instability inherent in the self-excited system. However, the proposed device
is shown to offer better stability conditions compared to a passive DVA.
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